Tuesday, July 25, 2017

WPF Tip #16 - Extended WPF Toolkit - ChildWindow & MessageBox Controls

Welcome to another Extended WPF Toolkit tip. In this tip, we will look at a couple of simple uses of the ChildWindow and MessageBox controls.

The ChildWindow control is a handy alternative to opening a separate dialog from the current application window, collecting a few pieces of data. The MessageBox operates similarly, but only presents some information and allows the user to respond, like any typical WinForm or WPF MessageBox.

In an MVVM world, opening another dialog typically either involves another View/ViewModel combination or a service to open a simple message/input dialog and return the result to the current View/ViewModel. This control is best used to replace a simple MessageBox service or when another View/ViewModel are being considered, but logically the data collected is limited and still belongs in the current ViewModel.

The use of the controls consists of a WindowContainer element containing one or more ChildWIndow and MessageBox elements. In this sample, the Window's main grid contains a WindowContainer with two ChildWindow elements and one MessageBox. They all begin with a Closed WindowState, and are opened with a button click. Here is a snippet of the view's XAML:

<StackPanel Grid.Row="2" Orientation="Horizontal" VerticalAlignment="Top">
     <Button Content="Toggle Window 1" Height="40" Width="120" Margin="2" Command="{Binding ButtonOneCommand}"/>
     <Button Content="Toggle Window 2" Height="40" Width="120" Margin="2" Command="{Binding ButtonTwoCommand}"/>
     <Button Content="Toggle Window 3" Height="40" Width="120" Margin="2" Click="ButtonBase_OnClick"/>
</StackPanel>

<tk:WindowContainer Grid.Row="2">
     <tk:ChildWindow WindowBackground="Blue"
                       Left="75"
                       Top="50"
                       Width="275"
                       Height="125" WindowState="{Binding WindowOneState}">
         <TextBlock Text="This is a child window" Padding="10"/>
     </tk:ChildWindow>

    <tk:ChildWindow WindowBackground="Green"
                       Left="175"
                       Top="125"
                       Width="275"
                       Height="125" WindowState="{Binding WindowTwoState}">
         <StackPanel>
             <TextBlock Text="This is a child window with a checkbox." Padding="10"/>
             <CheckBox Content="Check me!" Margin="8"/>
         </StackPanel>
     </tk:ChildWindow>

    <tk:MessageBox Caption="Toolkit Message" x:Name="SampleMsgBox"
                      Text="You have an alert!"/>

</tk:WindowContainer>

The MessageBox's button has a Click event handler to display the control:

private void ButtonBase_OnClick(object sender, RoutedEventArgs e)
{
     SampleMsgBox.ShowMessageBox();
}

The two ChildWindows are opened with Commands attached to the first two buttons in our Window's ViewModel:

private void OnButtonOneClicked()
{
     if (WindowOneState == WindowState.Open)
         WindowOneState = WindowState.Closed;
     else
         WindowOneState = WindowState.Open;
    RaisePropertyChanged(nameof(WindowOneState));
}

public RelayCommand ButtonOneCommand { get; private set; }

private void OnButtonTwoClicked()
{
     if (WindowTwoState == WindowState.Open)
         WindowTwoState = WindowState.Closed;
     else
         WindowTwoState = WindowState.Open;
    RaisePropertyChanged(nameof(WindowTwoState));
}

public RelayCommand ButtonTwoCommand { get; private set; }

The ChildWindows can be closed again by using the close button on the element or by clicking it's Open button again. This second option is not available when the ChildWindow has IsModal set to true. You'll notice the WindowState property of the two ChildWindows is bound to the ViewModel. This two-way binding ensures the IF statements in the command methods will work properly regardless of how each window is closed.

Here is a look at the Window with the second ChildWindow open. This control contains a TextBlock and a CheckBox inside a StackPanel. The ChildWindow can contain only one direct child, like a Window or UserControl.

childwindows-wpf

There are tons or other uses for these controls and many properties I haven't touched on at all. Go explore them for yourself and download the toolkit today.

Happy coding!


del.icio.us Tags: ,,

Tuesday, July 18, 2017

WPF Tips Update - The Extended WPF Toolkit Has a New Home

Hello WPF fans! You may have noticed that I am a fan of Xceed's free Extended WPF Toolkit. I am actually a huge fan of free tools and productivity gains in general.

This week when I started working on WPF Tip #16, I was pleased to notice that Xceed has released v3.1 of the Extended WPF Toolkit and moved the source code from CodePlex to GitHub! The move to GitHub was, of course, motivated by Microsoft announcement that CodePlex is shutting down in the coming months.

Download, Star and Watch the Extended WPF Toolkit on GitHub

The changelog for v3.1.0 includes 37 fixes and enhancements. The Plus Edition snagged an additional 19 fixes and improvements including a Windows 10 theme, but Plus received v3.1.0 last year. It pays to pay, it seems.

wpftoolkit-github

Learn all about the toolkit on GitHub or check out WPF Tip #11. This tip was my introductory post about the controls. And be sure to stay tuned for more WPF Tips about these controls and lots more!

Happy coding!


Saturday, July 8, 2017

WPF Tip #15 - Extended WPF Toolkit - The DataGrid Control

Tip #15 is a quick detour. We'll get back to using the CalculatorUpDown control in Tip #16.

If you are looking for a quick, free way to upgrade your application's DataGrid look and behavior, the Extended WPF Toolkit includes a DataGrid which provides a significant upgrade over the WPF DataGrid in the .NET Framework.

Here is a simple Grid with a standard DataGrid in the first row and the Toolkit's DataGridControl in the second row. Both are bound to the same ItemsSource, an ObservableCollection of three fictional videos.
<Grid>
    <Grid.RowDefinitions>
        <RowDefinition Height="*"/>
        <RowDefinition Height="*"/>
    </Grid.RowDefinitions>
   
    <DataGrid ItemsSource="{Binding Path=MediaCatalog, IsAsync=True}"/>

    <xcdg:DataGridControl Grid.Row="1" ItemsSource="{Binding Path=MediaCatalog, IsAsync=True}"/>
</Grid>
This is what we get when running the application.


With no customization, there's a much cleaner look. You also get an improved editing experience. When clicking into the PurchaseDate column, the grid detects that the underlying data type is DateTime, and provides a Date Picker to update the value.


For more information about features available in the control, go check out the CodePlex site (migrating soon).

Happy Coding!

Friday, June 23, 2017

WPF Tip #14 - Extended WPF Toolkit - The CalculatorUpDown Control

In this tip, we will continue to explore the free controls available in the Extended WPF Toolkit Community Edition.

The CalculatorUpDown control is a hybrid of sorts. It takes the functionality of an up/down numeric control and adds a dropdown button. Clicking on the dropdown button pops open a Calculator control. The output of the calculator displays in its window as well as in the text portion of the CalculatorUpDown.

Let's take a simple example of the control's use and walk through a few of the properties and how they impact the control's functionality. Here is the XAML:
<tk:CalculatorUpDown Grid.Row="1" Height="32" VerticalAlignment="Top" FormatString="C2" Watermark="Calculate!" Increment=".01" Maximum="9999.99" Minimum="0.01"/>
Upon first launching the window, this is how the control looks:
calc0
There is a numeric up/down with a watermark reading "Calculate!" and a dropdown button to open the calculator control. Let's click the up button to start.
calc0a
The Increment property is set to ".01" and the FormatString is "C2", so our value has incremented to $0.01 or 1 U.S. cent. You'll notice that the down button is now disabled because the Minimum property is currently equal to the control's Value.

Now to explore the calculator control a little. Click the dropdown button and enter a calculation.
calc1
As you use the calculator, you will notice that the calculator window updates as you enter and calculate values, but the textbox of the control only updates to show results of calculations. If the calculated value falls outside the Maximum or Minimum properties, it will default to those Max/Min values.

There was no code required on our part to add this rich functionality or our application, only the XAML markup seen above. You certainly could take this a step further by adding some data binding and leveraging other properties that the control exposes to do things like allowing the user to change the number format.

Happy coding!

del.icio.us Tags: ,,

Tuesday, June 13, 2017

WPF Tip #13 - Extended WPF Toolkit - ColorCanvas with MVVMLight, Binding and EventToCommand

In Tip #12, we used a ColorCanvas control in a SplitButton to change the Background color of the SplitButton using an event in the code behind. In this tip, we will do the same thing with data binding and commands using MVVMLight.

The first step is to add the MVVMLight NuGet package to the project:

image

Adding the package will add and update several classes in the project. We now have a MainViewModel and ViewModelLocator inside a ViewModel folder. The locator class exposes each ViewModel in the project so they can be bound in your views. To make the locator discoverable to the views in the project, MVVMLight added a new resource to the App.xaml:

<Application.Resources>
   <ResourceDictionary>
     <vm:ViewModelLocator x:Key="Locator" d:IsDataSource="True" xmlns:vm="clr-namespace:WpfApp1.ViewModel" />
   </ResourceDictionary>
</Application.Resources>

Now lets start with the changes we have to make. First remove the event handler from the MainWindow.xaml.cs. The next step is to replace that functionality with some decoupled logic in the MainViewModel. Two things are needed:

  • A ButtonBrush property to bind the SplitButton's Background property.
  • A ChangeBrushColorCommand RelayCommand to bind to the ColorChanged event of the ColorCanvas.

An OnColorChanged method is added to do the work needed when the RelayCommand is invoked. These are hooked up in the constructor, along with some default colors for the SplitButton. I made the button different colors at design-time and runtime as a way to validate that my binding code isn't broken. Here's the complete MainViewModel implementation:

public class MainViewModel : ViewModelBase
{
     public MainViewModel()
     {
         if (IsInDesignMode)
         {
             ButtonBrush = new SolidColorBrush(Colors.LightGray);
         }
         else
         {
             ButtonBrush = new SolidColorBrush(Colors.LightSkyBlue);

            ChangeBrushColorCommand = new RelayCommand<Color?>(OnColorChanged);
         }
     }

    public SolidColorBrush ButtonBrush { get; set; }

    internal void OnColorChanged(Color? p_Param)
     {
         if (p_Param.HasValue)
         {
             ButtonBrush = new SolidColorBrush(p_Param.Value);
         }
         else
         {
             ButtonBrush = new SolidColorBrush(Colors.Transparent);
         }

        RaisePropertyChanged(nameof(ButtonBrush));
     }

    public RelayCommand<Color?> ChangeBrushColorCommand { get; private set; }
}

The next thing we need is a converter class to convert the event args of the ColorChanged event to the Color? parameter type of our RelayCommand. SelectedColorChangedToColorConverter implements the IEventArgsConverter in MvvmLight. It's similar to value converters you may have created for data binding in WPF (see WPF Tip #4).

public class SelectedColorChangedToColorConverter : IEventArgsConverter
{
     public object Convert(object value, object parameter)
     {
         var args = (RoutedPropertyChangedEventArgs<Color?>)value;

        return args.NewValue ?? Colors.Transparent;
     }
}

Finally, lets make a few changes to the MainWindow view.

Set the DataContext for the Window using the ViewModelLocator:

DataContext="{Binding Main, Source={StaticResource Locator}}"

Add the converter to the Window.Resources:

<Window.Resources>
     <ResourceDictionary>
         <local:SelectedColorChangedToColorConverter x:Key="SelectedColorChangedToColorConverter" />
     </ResourceDictionary>
</Window.Resources>

Update the SplitButton to bind its Background property and the ColorCanvas to use the MVVMLight EventToCommand trigger, hooking up our RelayCommand through the converter.

<tk:SplitButton Content="Pick a Color" Height="32" Width="120" Background="{Binding ButtonBrush}">
     <tk:SplitButton.DropDownContent>
         <tk:ColorCanvas x:Name="MainColorCanvas">
             <i:Interaction.Triggers>
                 <i:EventTrigger EventName="SelectedColorChanged">
                     <command:EventToCommand Command="{Binding ChangeBrushColorCommand, Mode=OneWay}"
                                             EventArgsConverter="{StaticResource SelectedColorChangedToColorConverter}"
                                             PassEventArgsToCommand="True"/>
                 </i:EventTrigger>
             </i:Interaction.Triggers>
         </tk:ColorCanvas>
     </tk:SplitButton.DropDownContent>
</tk:SplitButton>

That's it!. Same functionality, but now with better separation between view and code.

Happy coding! (P.S. - I hope to get some proper code formatting hooked up to Blogger soon… or maybe a new blogging platform. Thanks for bearing with me.)


Wednesday, June 7, 2017

WPF Tip #12 - Extended WPF Toolkit - ColorCanvas

Last time in Tip #11, I explained the Extended WPF Toolkit and the different versions that are available. In the quick-n-dirty example, I added a SplitButton with a ColorCanvas that displays when opening the dropdown portion of the buttom.

In this tip, we are going to add just a few lines of code to take the color selected in the ColorCanvas and apply it as the background color of the SplitButton.

Let's start with the Xaml. There are two changes needed here (highlighted below). The first is to name the button so it can be referenced from the application's code. The second is adding a handler to the ColorCanvas' SelectedColorChanged event. This event fires every time the color changes on the canvas and provides the OldValue and NewValue as parameters in the event.

<tk:SplitButton x:Name="mainSplitButton" Content="Pick a Color" Height="32" Width="120">
     <tk:SplitButton.DropDownContent>
         <tk:ColorCanvas SelectedColorChanged="ColorCanvas_OnSelectedColorChanged" />
     </tk:SplitButton.DropDownContent>
</tk:SplitButton>

In the code behind for the Window, I have added the ColorCanvas_OnSelectedColorChanged event handler with some code to set the SplitButton's background color to a new SolidColorBrush the color of the NewValue selected on the ColorCanvas, provided it's not null.

private void ColorCanvas_OnSelectedColorChanged(object sender, RoutedPropertyChangedEventArgs<Color?> e)
{
     if (e.NewValue.HasValue)
     {
         mainSplitButton.Background = new SolidColorBrush(e.NewValue.Value);
     }
}

You could add an else condition to handle nulls by setting the background color back to some default color. Here's what the end result looks like.

colorcanvas

If you were following the MVVM pattern in your application, you would handle this through data binding and commands. In Tip #13, we will add MVVMLight to the mix and rework the example to follow this pattern.


del.icio.us Tags: ,,

Thursday, June 1, 2017

WPF Tip #11 - Free Controls with the Extended WPF Toolkit Community Edition

Everyone loves free things. When it comes to WPF controls, there is a wide selection of 3rd party components from which to choose: Telerik, Infragistics, DevExpress, etc. If you're an independent developer or a small business on a tight budget, the Extended WPF Toolkit, maintained by Xceed, is a great choice.

Currently available on Codeplex, the Community Edition of the toolkit includes nearly 50 WPF controls. These are just a few:
Xceed also offers two paid versions of the toolkit with additional controls and technical support, the Plus Edition and the Business Suite for WPF.

The latest release of the community edition is 3.0.0 and was released in Dec. 2016. I have recently contacted Xceed to inquire about their plans for the future of the toolkit and whether it will be migrated to GitHub or another host. As you may be aware, Codeplex is shutting down this year. See Brian Harry's post about the transition to GitHub for Codeplex projects.

EDIT: A representative replied to me to inform me that there will be an announcement about the migration of the Extended WPF Toolkit from Codeplex within a month.

In the spirit of including some code in these tips, here is a quick sample of the little bit of code required to add a SplitButton that opens a ColorPicker control for the user:
<Window x:Class="WpfApp1.MainWindow"
         xmlns="
http://schemas.microsoft.com/winfx/2006/xaml/presentation"
         xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
         xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
         xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
         xmlns:local="clr-namespace:WpfApp1"
         xmlns:tk="
http://schemas.xceed.com/wpf/xaml/toolkit"
         mc:Ignorable="d"
         Title="MainWindow" Height="350" Width="525">
     <Grid>
         <tk:SplitButton Content="Pick a Color" Height="32" Width="120">
             <tk:SplitButton.DropDownContent>
                 <tk:ColorCanvas />
             </tk:SplitButton.DropDownContent>
         </tk:SplitButton>
     </Grid>
</Window>
The end result when running the app looks like this with the button open:
image
The color picker itself require a little more code to setup. Let's take a look at its use in our next tip.

Happy coding!

del.icio.us Tags: ,